

Available online at www.sciencedirect.com

Il Farmaco 58 (2003) 1073-1076

IL FARMACO

www.elsevier.com/locate/farmac

Antituberculosis agents VIII Synthesis and in vitro antimycobacterial activity of alkyl α-[5-(5nitro-2-thienyl)-1,3,4-thiadiazole-2-ylthio]acetates

Alireza Foroumadi*, Zahra Kiani, Fatemeh Soltani

Department of Medicinal Chemistry, Faculty of Pharmacy, Kerman University of Medical Sciences, Haft Bagh Street, Kerman, Iran

Abstract

A series of alkyl α -[5-(5-nitro-2-thienyl)-1,3,4-thiadiazole-2-ylthio]acetic acid esters **6a**-**e** were synthesized and evaluated for in vitro antituberculosis activity against *Mycobacterium tuberculosis* strain H₃₇Rv using the BACTEC 460 radiometric system and BACTEC 12B medium. The antituberculosis data indicated that methyl, propyl, buthyl and benzyl esters showed a significant in vitro antimycobacterium tuberculosis activity (MIC = 0.39-0.78 µg/ml) and the ethyl analogue did not show a good activity (MIC > 6.25 µg/ml, %inhibition = 58). The most active compound of the series was *n*-propyl α -[5-(5-nitro-2-thienyl)-1,3,4-thiadiazole-2-ylthio]acetate (**6c**) with MIC value of 0.39 µg/ml.

© 2003 Éditions scientifiques et médicales Elsevier SAS. All rights reserved.

Keywords: Antituberculosis agents; Minimum inhibitory concentration; 5-Nitrothiophene; 1,3,4-Thiadiazole

1. Introduction

Tuberculosis is a chronic infection disease caused by several species of mycobacteria [1]. The incidence of tuberculosis is increasing world wide, partly due to poverty and inequity and partly to the HIV/AIDS pandemic, which greatly increase the risk of infection proceeding to overt disease [2].

The increase in drug-resistant *Mycobacterium tuberculosis* isolates during recent years presents a therapeutic challenge to physicians selecting antimicrobial agents [3]. Thus, the development of new agents with potent antituberculosis activities and fewer adverse effects is urgently desired.

Recently, we reported the synthesis of alkyl α -[5-(5-nitro-2-furyl)-1,3,4-thiadiazole-2-ylthio]acetates with antimycobacterium tuberculosis activity [4].

The 5-nitrothiophene isostere of 5-nitrofuran ring system is known to possess several biological properties such as, antileishmania, antimalaria, antitrypanosomal, anti-microbial and antituberculosis effects [5–9].

* Corresponding author. *E-mail address:* aforoumadi@yahoo.com (A. Foroumadi). Accordingly, as a part of study attempting to further optimize the nitroaromatics against *M. tuberculosis* herein we report the synthesis and in vitro antituberculosis activity of alkyl α -[5-(5-nitro-2-thienyl)-1,3,4-thia-diazole-2-ylthio]acetates **6a**-**e** as possible antimycobacterial agents.

2. Materials and methods

2.1. General

Melting points were taken on a Electrotermal IA-9100 capillary apparatus and are uncorrected. The IR spectra were obtained using a Shimatdzu 470 spectrograph (KBr disks). The ¹H-NMR spectra were recorded on a Bruker Ac-80 spectrometer and chemical shifts (δ) are in ppm relative to internal tetramethylsilane (TMS). The mass spectra were run on a Finigan TSQ-70 spectrometer at 70 eV. Elemental analyses (C, H, N) for compounds **6a**-e were within $\pm 0.4\%$ from the theoretical values.

0014-827X/03/\$ - see front matter © 2003 Éditions scientifiques et médicales Elsevier SAS. All rights reserved. doi:10.1016/S0014-827X(03)00158-7

2.2. Synthesis of the products

2.2.1. 2-Amino-5-(5-nitro-2-thienyl)-1,3,4-thiadiazole (2a)

A mixture of 5-nitrothiophene-2-carboxaldehyde thiosemicarbazone (**1a**, 5.2 g, 23 mmol) [10]and ammonium ferric sulfate dodecahydrate (11 g) in H₂O (55 ml) was refluxed for 1 h. Then 22 g ammonium ferric sulfate in H₂O (110 ml) was added and the mixture was refluxed for 4.5 h. After cooling, the separated solid was filtered off, washed with water and crystallized from EtOH– H_2O to give 4.6 g **2a** in 90% yield; m.p. 210–211 °C

IR (KBr) v_{max} : 1340, 1520 (NO₂), 3050 (CH thienyl), 3075–3100 cm⁻¹ (NH₂). Mass *m*/*z* (relative abundance %): 229 (81), 228(M⁺, 99), 212(8), 95(26), 82(18), 74(100), 69 (58), 60(73), 45(55).

2.2.2. 2-Chloro-5-(5-nitro-2-thienyl)-1,3,4-thiadiazole (3a)

Compound **2a** (2.35 g, 9.5 mmol) was ground with an excess of NaNO₂ (2 g) and the mixture was introduced in small portion and with stirring into a ice cooled solution of conc. HCl (30 ml) and water (13 ml) containing Cu powder (0.5 g). The reaction mixture was allowed to reach room temperature and stirred for additional 2 h. Then heated to 55 °C until the evolution of gas ceased. The reaction mixture was cooled and extracted with CHCl₃ (3 × 40 ml). The combined extracts were washed with dilute H₂SO₄, water and dried (Na₂SO₄). The solvent was evaporated to give crude **3a**. Purification was achieved by passage through a short silica gel column with chloroform as eluent. The product was crystallized from ethanol to give 1.5 g of **3a** in 63% yield; m.p. 175–177 °C.

IR (KBr) ν_{max} : 1334, 1497 (NO₂), 3090 cm⁻¹ (CH thienyl). ¹H-NMR (CDCl₃, 80 MHz) δ : 7.91 (d, 1H, H4-thiophene, J = 4.8 Hz) and 7.40 (d, 1H, H8-thiophene, J = 4.8 Hz). Mass m/z (relative abundance %): 249 (36), 248(20), 247(81), 219(14), 217(33), 189(19), 138(10), 126(16), 111(17), 95(43), 93(100), 79(45), 69(83), 57(68), 45(38).

2.2.3. 2-Mercapto-5-(5-nitro-2-thienyl)-1,3,4-thiadiazole (4a)

A mixture of **3a** (2 g, 8.16 mmol) and excess thiourea (2 g) in 20 ml ethanol was refluxed for 3 h. After cooling conc. HCl (3 ml) and water (20 ml) was added and the solids isolated by filtration were washed with water and crystallized from EtOH–H₂O giving 1.5 g **4a** in 75% yield; m.p. 194–195 °C

IR (KBr) v_{max} : 1350, 1510 (NO₂), 3050 cm⁻¹ (CH thienyl)

2.2.4. General method for the synthesis of alkyl α -[5-(5-nitro-2-thienyl)-1,3,4-thiadiazole-2-ylthio] acetates **6a**-e

To a mixture of **4a** (1 mmol) and alkyl α -chloro acetates **5a**-**e** (1.25 mmol) in ethanol (15 ml), KOH (66 mg, in 5 ml H₂O) was added drop-wise. The mixture was stirred at room temperature overnight, H₂O was added and the separated solid was filtered off, washed with water and crystallized from ethanol.

The following compounds were prepared according to the general procedure.

2.2.4.1. Methyl α -[5-(5-nitro-2-thienyl)-1,3,4thiadiazole-2-ylthio] acetate (6a). Yield: 92%; m.p 128–129 °C. IR (KBr): $v_{max} = 1340$, 1504 (NO₂), 1729 (C=O), 2928 cm⁻¹ (CH₂). ¹H-NMR (CDCl₃, 80 MHz) $\delta = 7.90$ (d, 1H, H4-thiophene, J = 4.3 Hz), 7.35(d, 1H, H3-thiophene, J = 4.3 Hz), 4.21 (s, 2H, SCH₂), 3.81 ppm (s, 3H, CH₃)

2.2.4.2. Ethyl α -[5-(5-nitro-2-thienyl)-1,3,4-thiadiazole-2-ylthio] acetate (**6b**). Yield: 72%; m.p 129–130 °C. IR (KBr): $v_{max} = 1340$, 1500 (NO₂), 1719 (C=O), 2900 cm⁻¹ (CH₂). ¹H-NMR (CDCl₃, 80 MHz) $\delta = 7.91$ (d, 1H, H4-thiophene, J = 4.3 Hz), 7.33 (d, 1H, H3thiophene, J = 4.3 Hz), 4.48–4.10 (m, 4H, SCH₂ and OCH₂), 1.31 ppm (t, 3H, CH₃, J = 6.4 Hz)

2.2.4.3. *n*-*Propyl* α -[5-(5-*nitro*-2-*thienyl*)-1,3,4*thiadiazole*-2-*ylthio*] acetate (6c). Yield: 94%; m.p 118–119 °C. IR (KBr): $v_{max} = 1330$, 1504 (NO₂), 1715 (C=O), 2900 cm⁻¹ (CH₂). ¹H-NMR (CDCl₃, 80 MHz) $\delta = 7.90$ (d, 1H, H4-thiophene, J = 4.3 Hz), 7.36 (d, 1H, H3-thiophene, J = 4.3 Hz), 4.42–4.099 (2m, 4H, SCH₂ and OCH₂), 1.87–1.31 (m, 2H, CH₂), 0.96 ppm (t, 3H, CH₃, J = 6.4 Hz).

2.2.4.4. *n*-Buthyl α -[5-(5-nitro-2-thienyl)-1,3,4thiadiazole-2-ylthio] acetate (6d). Yield: 88%; m.p 115–116 °C. IR (KBr): $v_{max} = 1340$, 1504 (NO₂), 1709 (C=O), 2912 cm⁻¹ (CH₂). ¹H-NMR (CDCl₃, 80 MHz) $\delta = 7.90$ (d, 1H, H4-thiophene, J = 4.3 Hz), 7.35 (d, 1H, H3-thiophene, J = 4.3 Hz), 4.34–4.41 (m, 4H, SCH₂ and OCH₂), 1.90–1.10 (m, 4H, CH₂CH₂), 0.93 ppm (t, 3H, CH₃, J = 6.4 Hz).

2.2.4.5. Phenylmethyl α -[5-(5-nitro-2-thienyl)-1,3,4thiadiazole-2-ylthio] acetate (6e). Yield: 46%; m.p 123–124 °C. IR (KBr): ¹H-NMR (CDCl₃, 80 MHz) δ = 7.92 (d, 1H, H4-thiophene, *J* = 4.3 Hz), 7.33 (d, 1H, H3-thiophene, *J* = 4.3 Hz), 7.43–7.10 (m, 5H, aromatic), 4.20 ppm (s, 4H, SCH₂ and OCH₂).

2.3. Biological assay

All of the compounds were evaluated for in vitro antituberculosis activity against *M. tuberculosis* as part

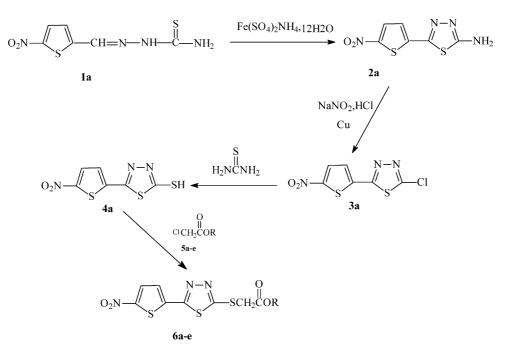


Fig. 1. Synthesis of alkyl α -[5-(5-nitro-2-thienyl)-1,3,4-thiadiazole-2-ylthio] acetates 6a-e.

of TAACF TB screening program under direction of the US National Institute of Health, NIAID division. Rifampicin was used as a reference drug.

Primary screening was conducted at the single concentration, 6.25 µg/ml against *M. tuberculosis* $H_{37}Rv$ (ATCC 27294) in BACTEC 12B medium using a broth microdilution assay, the Microplate Alamar Blue Assay (MABA) [11]. Compounds effecting <90% inhibition in the primary screening (MIC > 6.25 µg/ml) were not generally evaluated further.

The active compounds were retested by serial dilution beginning at 6.25 μ g/ml against *M. tuberculosis* H₃₇Rv to determine the actual minimum inhibitory concentration (MIC) in the BACTEC 460.

The MIC is defined as the lowest concentration effecting a reduction in fluorescence of 90% relative to controls.

3. Results and discussion

The 2-amino-5-(5-nitro-2-thienyl)-1,3,4-thiadiazole (2a) was obtained by oxidative cyclization of 5-nitro-2-thiophene carboxaldehyde thiosemicarbazone (1a) [10] in high yield. Diazotation of 2a in hydrochloric acid in the presence of copper powder gave 2-chloro-5-(5-nitro-2-thienyl)-1,3,4-thiadiazole (3a). The reaction of 3a with thiourea in refluxing ethanol afforded 2-mercapto-5-(5-

Table 1 In vitro antituberculosis activity of alkyl α -[5-(5-nitro-2-thienyl)-1,3,4-thiadiazole-2-ylthio]acetates **6a**-e^a

$$O_2N - SCH_2COR$$

Comp.	R	MIC (μ g/ml) ^b	Inhibition (%)	Activity	Actual MIC (g/ml)
6a	Methyl	< 6.25	100	+	0.78
6b	Ethyl	> 6.25	58	_	ND ^c
6c	n-Propyl	< 6.25	100	+	0.39
6d	n-Buthyl	< 6.25	100	+	0.78
6e	Benzyl	< 6.25	99	+	0.78

^a MIC rifampicin 0.125-0.5 µg/ml.

^b Primary screening.

° ND, not determined.

nitro-2-thienyl)-1,3,4-thiadiazole (4a). Treatment of the latter with alkyl chloro acetates 5a-e gave alkyl α -[5-(5-nitro-2-thienyl)-1,3,4-thiadiazole-2-ylthio] acetates 6a-e (Fig. 1).

From antituberculosis data reported in Table 1, the majority of compounds **6a** and **6c**–**e** were efficient antimycobacterial agents showing MIC values of $0.39-0.78 \mu g/ml$ (Table 1).

The best efficiency expressed as MIC was exhibited by propyl ester **6c** (MIC = 0.39 µg/ml), but significant decrease in potency was observed by ethyl ester with inhibition percentage of 58 (MIC > 6.25 µg/ml). The finding is in contrast with those of furan analogues which ethyl ester showed a good antituberculosis activity (%inhibition = 100, MIC = 1.56 µg/ml) [4].

Acknowledgements

Antimycobacterial data were provided by the Tuberculosis Antimicrobial Acquisition and Coordinating Facility (TAACF) through a research and development contract with the U.S. National Institute of Allergy and Infectious Diseases. This research was partially supported by the Research Council of Medical Sciences University of Kerman, Iran.

References

 M.D. Iseman, Tuberculosis, in: L. Goldman, J.C. Bennett (Eds.), Cecil Textbook of Medicine, W.B. Saunders Company, London, 2000, pp. 1723–1731.

- [2] J.M. Grange, A. Zulma, The global emergency of tuberculosis: what is the cause?, J. R. Soc. Health 122 (2002) 78–81.
- [3] B.J. Culliton, Drug-resistant TB may bring epidemic, Nature (London) 356 (1992) 472–473.
- [4] A. Foroumadi, M. Mirzaei, A. Shafiee, Antituberculosis agents I. Synthesis and antituberculosis activity of 2-aryl-1,3,4-thiadiazole derivatives, Pharmazie 56 (2001) 610–612.
- [5] B. Savornin, N.E. Madadi, F. Delmas, M. Gasquet, P. Timon-David, P. Vanelle, J. Maldonado, Evaluation of in vitro leshmanicidal activity of hydrazones of thiophene carboxaldehydes against promastigotes of *Leishmania infantum* an *Leishmania tropica*, J. Pharm. Pharmacol. 43 (1991) 58–59.
- [6] F. Tedlaouti, M. Gasquet, F. Delmas, P. Timon-David, N.E. Maddadi, P. Vanelle, J. Maldonado, Evaluation of the antimalaria activity of new compounds against *Plasmodium falciparum*, in vitro and *Plasmodium berghei* in vivo, J. Pharm. Belg. 45 (1990) 306–310.
- [7] H. Cerecetto, R. Di Maio, G. Ibarruri, G. Seoane, A. Denicola, G. Pluffo, C. Quijano, M. Paulino, Synthesis and anti-trypanosomal activity of novel 5-nitro-2-furaldehyde and 5-nitrothiophene-2-carboxaldehyde semicarbazone derivatives, Farmaco 53 (1998) 89–94.
- [8] G. Ronsisvalle, G. Blandino, Synthesis, spectra behaviour and microbiological properties of some di(nitrothienyl)sulfides, Farmaco [Sci] 36 (1981) 785–793.
- [9] D.G. Rando, D.N. Sato, L. Siqueira, A. Malvezzi, C.Q. Leite, A.T. Amaral, E.I. Ferreira, L.C. Tavares, Potential tuberculostatic agents. Topliss application on benzoic acid[(5-nitro thiophen-2-yl)-methylene]-hydrazide series, Bioorg. Med. Chem. 10 (2002) 557–560.
- [10] G. Combes, A new method of preparing 2-thenaldehyde(2thiophenecarbox-aldehyde) -formation of 5-nitro-2-thenaldehyde, Bull. Soc. Chim. France (1952) 701–702.
- [11] L. Collins, S.G. Franzblau, Microplate alamar blue assay versus BACTEC 460 system for high-throughput screening of compounds against *Mycobacterium tuberculosis* and *Mycobacterium avium*, Antimicrob. Agents Chemother. 41 (1997) 1004–1009.